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The resonant absorption of pulsed C02 laser radiation in a mixture of C02 and N2 is 
accompanied by the kinetic cooling effect [i]. This effect has been studied experimentally 
[2-4] and theoretically [4, 5] in mixtures containing more than 1% carbon dioxide. The de- 
pendence of the temperature drop (decrement) and duration of the cooling effect on the param- 
eters of the pulse and the medium has been investigated [4, 5] on the basis of the kinetic 
equations for the inventories of vibrational quanta in each mode. It has been shown [6] 
that the cooling decrement increases appreciably as the temperature of the mixture is raised 
to 500-600~ The latter study was carried out in the approximation of a specified radiation 
field, which is valid over short paths~ 

On the other hand, it is clear that the increased density in the axial zone of the beam 
dueto kinetic cooling tends to suppress diffraction spreading and can elicit self-focusing, 
which, in turn, affects the parameters of the medium. The present study is devoted to a 
numerical analysis of the self-consistent problem of the interaction of CO2 laser radiation 
with a mixture of carbon dioxide and nitrogen~ The characteristic parameters are consistent 
with laboratory experimental conditions [4]~ The principal aim is to determine the conditions 
under which self-focusing due to kinetic cooling can be recorded in natural experiments. 

i. The self-induced effect is analyzed in the quasioptical approximation [7] on the basis 
of the "parabolic" equation for the complex amplitude of the electric field ~(r, z, t): 
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where k = 2~/~ is the wave number, v is the group velocity of light, a and n are the ab- 
sorption coefficient and refractive index of light in the medium, 6n is the variation of the 
refractive index of the medium; and Am= i/ro3/3r(r3/3r). The first term on the right-hand 
side of Eq. (i.i) describes diffraction, and the last term describes absorption in the medium. 
The absorption process is assumed to be linear, ioeo, the optical brightening effect in the 
medium is disregarded. The self-induced effect created by variation of the refractive index 
of the medium in kinetic cooling is described by the second term on the right-side of (i.i). 
The variation of the refractive index is assumed to be proportional to the density pertur- 
bation 6n = (no -- l)6p/po. The relative variation of the density of the gas p(r, z, t), in 
turn, obeys the wave equation 
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in which ~ is the coefficient of (cubical) thermal expansion, Co is the velocity of sound, 
and T(Io, t) is the temperature source function. Equation (1.2) is written on the assumption 
that the longitudinal density gradients are negligible in comparison with the transverse 
gradients. The temperature source function is determined from the equation 

OT/at = ~ ( I o ,  t)/(CpPo), (1.3) 

in which ~(Io, t) is the power density of the cooling (heating) sources in connection with 
energy transfer between the translational and vibrational degrees of freedom of the molecules, 
po is the unperturbed density of the gas, and Cp is the heat capacity of translational and 
rotational degrees of freedom of the gas at constant pressure. It is assumed in the formu- 
lation of Eq. (1.3) that the influence of thermal conduction and forced convection is small 
in the time scales of interest here. 
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Thus, the characteristic transition times to fully developed convection ZK and thermal 
conduction ~T are defined as [5] 

~K ~ r(~zlor~g/9oC~)-~/~, % ~ r'~/(4%) �9 

For values of the parameters consistent with laboratory experimental conditions [4] ~K~I0-~ 
sec, and ~T ~0.i sec. These estimates refer to the case of instantaneous thermalization 
of absorbed energy ~(Io, t) = ~Io, where Io = cnI~oI~/8~. In the investigated case of 
kinetic cooling l~(Io, t) I < ~Io, because the energy transferred into molecular vibrational 
levels from the translational degrees of freedom of the gas is lower than the absorbed 
energy. Consequently, the estimate for ~K is too low. On the other hand, the duration of 
kinetic cooling ~I0 -4 sec, which is at least an order of magnitude shorter than ~K or ~T, 
justifying the approximations used. The power density of the cooling sources r t) is 
given by the relation 

�9 (:o, 0 : ~ [A (~)Eo,oP (~,  4 )  -- (Eoo~ -- ~ (~) ~o~o) W~ (~. ~)].  (1 .4)  

This quantity is the difference between the energy flux from translational degrees of freedom 
to the (01~0) level [first term on the right-hand side of (1.4)] and the energy flux re- 
leased as heat in three-quantum decay of the (00~ level [second term in (1.4)]. Heating 
is a consequence of the energy deficit associated with the transition (00~ § (03~0). The 
notation in (1.4) corresponds to that used in [5]: N is the density of carbon dioxide mole- 
cules; 

~4 (~) = 2 (~ + ~) / (2  + 6~, + 34); p (~,  4 )  = 

P~o ( ~  ~o) (1 - ~xp ( -  Eo~o To)), 

W 3 (et, e.~) ---- ~ [exp (--  500/To) e~ (1 + e~) - -  s~ (e., + 2)~]; 

P.,.o ::  PeK1  + paK2; P3 : peK3 s paK4; 

K i denotes the kinetic coefficients; Pc and Pa are the partial pressures of the carbon di- 
oxide and nitrogen in the mixture; P2o and P3 have the significance of the reciprocal times 
of vibration--translation relaxation and three-quantum decay, respectively; sl is the average 
number of quanta of the asymmetrical mode of CO2 and vibrations of N2; ~2 is the same for 
the combined symmetrical and strain modes of COs in mutual equilibrium; e~ is the equilibrium 
value of sz; and To is the temperature of the gas. The inventories of vibrational quanta a~ 
and s2 satisfy the kinetic equations 

de:--At --: X [Wz (el. e~,) + E (Io, el, ~z)]; 
dt (1 .5 )  

dt . . . .  

i n  w h i c h  X = P e / ( P c  + P a ) ;  E(Yo,  z~,  s2)  i s  an o p t i c a l  pumping  t e r m  [ 8 ] :  

E (4 .  ~,. ~) -- (Zo~o/~) [~/(2 + ~)~ - e~/(~ + ~)] ~6 (~ + ~)/[( i  + ~,)(2 + ~)~], 

h~ = Eool -- E1oo is the optical transition energy, and oo is the cross section for absorption 
of radiation by a C02 molecule. 

Thus, the investigation of the self-induced effect under kinetic cooling conditions 
entails an analysis of the quasioptical equation (i.i) in conjunction with the equations de- 
scribing the variation of the density (1.2), heat withdrawal (1.3), and the kinetic behavior of the 
inventories of vibrational quanta (1.5) and (1.6). 

2. For numerical analysis it is practical in (1.1)-(1.6) to transform to dimensionless 
variables and functions r' = r/ao, z' = z/(ka~), T = (t --z/v)/to, ~' =~/I~oI, P' = P/P*, 
T' = T/T*, where ao is the initial beam radius, to is the pulsewidth, ~o is a characteristic 
value of the field amplitude at the entrance to the medium, and 9" and T* are the scales for 
measurement of tbe density and temperature source function. In the new variables we have ? 

*From now on we drop the primes from the dimensionless variables. 
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The nonlinearity parameter R is proportional to the pulse energy W and depends on the charac- 

teristics of the medium: 

k~ ("o- t / x  ~:~ ~,A'A ~o 0 + e.,) 
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where N A is Avogadro's number, Ro is the universal gas constant, and ~ = ~oXka~/2 is the re- 
duced absorption. The wave equation takes the form 

02p/O'C 2 - -  c~'hj_9 = c2h,. T,  (2.2) 

where c = toCo/ao is the acoustic parameter or ratio of the pulsewidth to the characteristic 
equalization time of the pressure over the beam cross section. The density scale p* = pojtoT 
and scale of the temperature source function T* = TojtoT, where (jto) has the significance of 
the ratio of the energy transmitted across the absorption cross section of the CO= molecule 

o 2 4], in time to to the optical transition energy, j =oolo (i + ~)/[h~(l + e2/ ) T = NEologY/ 
(poCpTo). With good accuracy, Eqs. (1.3)-(1.6) are linearized with respect to the deviations 
of the inventories of vibrational quanta from their equilibrium values Asz = e~ -- e~ and he2 = 

O 
e2 -- E=. In dimensionless variables the linearized equations assume the form 

OT/O~ = Xlej + ~2e.,.; 

Oel/d~ = X [ v  - -  elto(~t -6 j)  @ e2t~(~ + ] ) ] ;  

de.,,"d~ = - - 2 v  q-  2e~to(3p/2 -i- ]) - -  2e~toq(O -I- ]), 

(2.3) 
(2.4) 
(2.5) 

wh~re e i = Asi/(e~jto ). The constant coefficients in Eqs. (2.3)-(2.5) depend in a complex 
way on the molecular constants; in particular, for To = 500~ we have ~ ~ 0.1P3, p ~ 1.6P3, 
and 8 ~ 0.8P3 + 8P2o, where 9 > p > ~. If the medium is far from saturation (j<< ~), then 
in the period of three-quantum decay of the (00~ level the energy transmitted across the 
cross section oo is much smaller than ~. In this case the kinetic cooling decrement is 
proportional to the pulse energy W. If the energy transmitted across ~o during the vi- 
bration-translation relaxation time T ~ i/P2o is much greater than ~ (j >>e), then the cool- 
ing depth attains a maximum and any further increase in the intensity merely accelerates the 
transition process. + 

A typical time dependence of the reduced cooling decrement is given in Fig. i. It has 
been obtained from the solution of the system (2.3)-(2.5) in the approximation of a specified 
intensity Io = const (curve i). Curve 2 corresponds to nonresonant absorption. 

3. The system of equations (2.1)-(2.5) has been solved on the basis of a specially 
developed set of programs. For the integration of the quasioptical equation (2.1) we use 

*Different values are given in the literature for the kinetic relaxation constants in CO2 
at elevated temperatures. I1ere we use the data of [6]. If the constants from [i0] are used, 
the cooling depth is smaller by 2/3 to 1/2. 
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the method of finite elements [9], and for the wave equation (2.2) the discrete Fourier-- 
Bessel transform method. During the computational process the space--time distributions of 
the intensity for various values of z are printed out. along with the profiles of the density 
perturbations and te~@erature source function T. t 

From the point of view of recording the self-focusing effect in a natural experiment an 
important factor is the relative increment of the intensity at the observation point A = 
(I(t*, r, z) -- I(0, r, z))/I(0, r, z). On the other hand, a suitable parameter for assessing 
the self-focusing efficiency is the intensity at the observation point~ normalized to the 
input intensity: I(t, r, z)/I(0, 0,0). Both of these parameters are used in the present 
study, where A denotes the relative intensity increment on the beam axis. The time t* corre- 
sponds to maximum self-focusing. 

Typical results corresponding to room temperatures (To = 300~ X = 0.5, to = 90 ~sec, 
= 0, R = 0.14, value of no --i taken from [ll]) are given in Fig. 2. The initial conditions 

correspond to a time-square pulse with a Gaussian intensity profile I(t, r, z) = Io exp 
(--(r/ao) 2) and a plane phase front. Figure 2a represents the time variation of the normalized 
intensity on the beam axis at a distance equal to the diffraction length from the entrance to 
the medium. It is seen that the leading edge is subjected to diffraction spreading (Fig. 2b, 
curve i, ~ = 0). 

At times t of the order of the cooling duration the intensity is observed to grow 
(curve 2, T = 0.25), and then in the course of transition from cooling to heating defocusing 
is observed (curve 3, T = 0.5). The radial distributions of the normalized density per- 
turbation at a distance equal to the diffraction length are represented by dashed curves in 
Fig. 2b. Curves 2' and 3' correspond to times T = 0.25 and 0.5. The negative values of the 
density perturbations for curve 2' and the positive values for curve 3' at the periphery of 
the beam are attributable to hydrodynamic pressure-equalization effects. In the given ex- 
ample the relative intensity increment A at the diffraction length attains 20%. 

As already mentioned, the kinetic cooling decrement increases at elevated temperatures. 
It is therefore sensible to consider the self-induced effect at a temperature of the mixture 
To = 500~ The characteristic parameter in the theory of transient self-focusing is the 
pulse energy [12]. Consequently, in the first series of numerical experiments we fix the 
pulse energy W = 1 J (R = 0.25) and vary the beam radius ao. In order for the effect of 
diffraction to be identical within the entire series of experiments the observation point is 
situated at a distance z = ka~ or kaY~2. The pulsewidth is chosen to maximize the increment 
g at the time 2to/3 (with allowance for hydrodynamic effects). The CO2 concentration is se- 
lected with regard for the dependence of the cooling decrement AT on the CO2 content of the 
mixture at a specified pulse energy and for the absorption of radiation in the medium, since 
absorption is significant at high temperatures. 

The optimal concentration X is taken to be that at which the product of the cooling dec- 
rement and the radiation attenuation coefficient M(X) = AT exp (-~oXz) attains a maximum. 

tThe accuracy of the calculations is tested according to the value of the total radiated power 

in the beam P =: 2~ ([(t,. I, z)rdr. The power decays with distance from the entrance to the medium 
0 

in accordance with linear absorption. It has been sho~ that with halving of the integration 
step the numerical value of the solution varies within the limits of a few percent. 
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Here z is the observation distance. If the pulsewidth is made to the time to attain maximum 
cooling, then for a beam with ao = 0.2 cm and W = 1 J the function M(X) has a maximum at X = 
0.i (Fig. 3, curve i). Consequently, the numerical experiments of the first series are 
carried out for X = 0.i. 

The dependence of A on the initial beam radius ao is shown in Fig. 4. The observation 
points are situated at the diffraction length (curve i) and at half that length (curve 2). 
The variation of the acoustical number c within the experimental series is represented by 
the dashed curve 3. It is apparent from the graph that the dependence of the relative in- 
tensity increment A on ao has characteristic maxima. The reduction of the self-focusing for 
large radii ao is attributable to the influence of absorption, since the observations are 
made at large distances. Characteristically, the maximum of curve 2 in Fig. 4 is shifted 
toward larger values of ao in comparison with the maximum of curve i. The decrease of A ob- 
served for small radii ao is explained by the fact that saturation effects begin to set in 
at high intensity. As a result, the increase in the diffraction spreading for small ao can 
no longer be compensated by the growth of the cooling decrement due to increased intensity. 

The second series of numerical experiments is carried out for a fixed intensity Io and 
a fixed pulsewidth to = 50 ~sec. It is assumed that the observations are made at distances 
of the order of 1-4 m, which are consistent with natural experimental conditions. For a 
fixed radiation intensity the cooling decrement increases with a decrease in the content of 
C02 in the mixture (due to prolonging of the cooling period). Accordingly, the self-focusing 
effect must be more appreciable at low C02 concentrations. The function M(X) in this case is 
represented by curve 2 in Fig. 3. However, the pulsewidth is limited by the structure of the 
radiation sources. We therefore choose a concentration X = 0.05. Figure 5 gives the normal- 
ized intensity on the beam axis I/Io as a function of z (0~z~ 400 cm) for two initial 
radii ao = 0.25 (curves 1 and i') and ao = 0.5 cm (curves 2 and 2'). Curves 1 and 2 corre- 
spond to the initial time, and curves i' and 2' to the time of maximum self-focusing T = 0.4. 
It is important to note that with an increase in the beam radius ao the pulse energy and, 
hence, the nonlinearity parameter R increase. For ao = 0.25 Cm the nonlinearity parameter 
R = 0.6, and for ao = 0.5 cm we have R = 2.4. HoweVer, as is evident from Fig. 5, if the 
observation distance is shorter than 2 m, then the increase in I/Io is more appreciable for 
a beam of smaller radius. This result is attributable to the fact that for small beam radii 
nonlinear effects are felt at shorter distances. A typical plot of the self-focusing param- 
eters A and I/Io as a function of the initial beam radius for a fixed value of the nonlinearity 
parameter R = 0.5 is given in Fig. 6. The observation distance is 1 m. The relative increment 
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A decreases monotonically with i~icreasing radius ao, since the path length z/k~o 2 decreases~ 
This monotonic behavior is violated in the case of I/Io as a function of the initial radius 
(curve 2). Clearly, for narrow beams the increasing diffraction can no longer be compen- 
sated in the investigated self-focusing mechanism. We note that numerical experiments with 
beams having a "super-Gaussian" profile I = Io exp (--(r/ao)6) at distances z = 0-100 cm do 
not indicate any appreciable intensification of the self-focusing effect in comparison with 
Gaussian beams. 

The self-focusing efficiency can be affected by the shape of the leading edge of the 
radiation pulse, because it has been shown [4] that the kinetic cooling decrement is greater 

. p-i in the case of a pulse with a steep leading edge However, at times t ~ ~ + P~o the 
kinetic cooling decrement is completely determined by the energy of the radiation transmitted 
through the medium [4]. Consequently, for pulses having a rise time much shorter than the 
kinetic cooling period in the medium the self-focusing efficiency will be determined mainly 
by the pulse energy W (i.e., by the value of the nonlinearity parameter R). 

The numerical simulation results have shown that the transient self-induced thermal 
effect created by the kinetic cooling effect in a gas has a significant effect on the shape 
of the pulse that propagates in the medium. At high temperatures this effect can be appre- 
ciable at distances of the order of 1 m. It is therefore reasonable to anticipate the possi- 
bility of recording the given type of self-induced effect experimentally. 

Experiments on the self-induced action of resonant radiation under kinetic cooling 
conditions can provide a criterion for the proper selection of the kinetic rate constants 
of vibrational relaxation in carbon dioxide molecules. 
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